svgen.cartesian.mutate
index
/home/vkottler/src/vkottler/workspace/svgen/svgen/cartesian/mutate.py

A module implementing cartesian object mutations.

 
Classes
       
builtins.tuple(builtins.object)
Angle
Translation

 
class Angle(builtins.tuple)
    Angle(degrees: float, radians: float, sin: float, cos: float)
 
A definition of angle attributes.
 
 
Method resolution order:
Angle
builtins.tuple
builtins.object

Methods defined here:
__getnewargs__(self)
Return self as a plain tuple.  Used by copy and pickle.
__repr__(self)
Return a nicely formatted representation string
_asdict(self)
Return a new dict which maps field names to their values.
_replace(self, /, **kwds)
Return a new Angle object replacing specified fields with new values

Class methods defined here:
_make(iterable) from builtins.type
Make a new Angle object from a sequence or iterable

Static methods defined here:
__new__(_cls, degrees: float, radians: float, sin: float, cos: float)
Create new instance of Angle(degrees, radians, sin, cos)
from_degrees(val: float) -> 'Angle'
Create an angle from a degree value.
from_radians(val: float) -> 'Angle'
Create an angle from a radian value.

Data descriptors defined here:
degrees
Alias for field number 0
radians
Alias for field number 1
sin
Alias for field number 2
cos
Alias for field number 3

Data and other attributes defined here:
__annotations__ = {'cos': <class 'float'>, 'degrees': <class 'float'>, 'radians': <class 'float'>, 'sin': <class 'float'>}
__match_args__ = ('degrees', 'radians', 'sin', 'cos')
__orig_bases__ = (<function NamedTuple>,)
_field_defaults = {}
_fields = ('degrees', 'radians', 'sin', 'cos')

Methods inherited from builtins.tuple:
__add__(self, value, /)
Return self+value.
__contains__(self, key, /)
Return bool(key in self).
__eq__(self, value, /)
Return self==value.
__ge__(self, value, /)
Return self>=value.
__getattribute__(self, name, /)
Return getattr(self, name).
__getitem__(self, key, /)
Return self[key].
__gt__(self, value, /)
Return self>value.
__hash__(self, /)
Return hash(self).
__iter__(self, /)
Implement iter(self).
__le__(self, value, /)
Return self<=value.
__len__(self, /)
Return len(self).
__lt__(self, value, /)
Return self<value.
__mul__(self, value, /)
Return self*value.
__ne__(self, value, /)
Return self!=value.
__rmul__(self, value, /)
Return value*self.
count(self, value, /)
Return number of occurrences of value.
index(self, value, start=0, stop=9223372036854775807, /)
Return first index of value.
 
Raises ValueError if the value is not present.

Class methods inherited from builtins.tuple:
__class_getitem__(...) from builtins.type
See PEP 585

 
class Translation(builtins.tuple)
    Translation(dx: float = 0.0, dy: float = 0.0)
 
A definition of a translation in a Cartesian coordinate system.
 
 
Method resolution order:
Translation
builtins.tuple
builtins.object

Methods defined here:
__eq__(self, other) -> bool
Test if two translations are equivalent.
__getnewargs__(self)
Return self as a plain tuple.  Used by copy and pickle.
__repr__(self)
Return a nicely formatted representation string
_asdict(self)
Return a new dict which maps field names to their values.
_replace(self, /, **kwds)
Return a new Translation object replacing specified fields with new values
rotate(self, angle: svgen.cartesian.mutate.Angle = Angle(degrees=90.0, radians=1.5707963267948966, sin=1.0, cos=6.123233995736766e-17)) -> 'Translation'
Rotate this translation vector by some angle.

Class methods defined here:
_make(iterable) from builtins.type
Make a new Translation object from a sequence or iterable

Static methods defined here:
__new__(_cls, dx: float = 0.0, dy: float = 0.0)
Create new instance of Translation(dx, dy)
normalize(dx: Union[ForwardRef('Translation'), float], *args, **kwargs) -> 'Translation'
Normalize input data into a translation.

Data descriptors defined here:
dx
Alias for field number 0
dy
Alias for field number 1

Data and other attributes defined here:
__annotations__ = {'dx': <class 'float'>, 'dy': <class 'float'>}
__match_args__ = ('dx', 'dy')
__orig_bases__ = (<function NamedTuple>,)
_field_defaults = {'dx': 0.0, 'dy': 0.0}
_fields = ('dx', 'dy')

Methods inherited from builtins.tuple:
__add__(self, value, /)
Return self+value.
__contains__(self, key, /)
Return bool(key in self).
__ge__(self, value, /)
Return self>=value.
__getattribute__(self, name, /)
Return getattr(self, name).
__getitem__(self, key, /)
Return self[key].
__gt__(self, value, /)
Return self>value.
__hash__(self, /)
Return hash(self).
__iter__(self, /)
Implement iter(self).
__le__(self, value, /)
Return self<=value.
__len__(self, /)
Return len(self).
__lt__(self, value, /)
Return self<value.
__mul__(self, value, /)
Return self*value.
__ne__(self, value, /)
Return self!=value.
__rmul__(self, value, /)
Return value*self.
count(self, value, /)
Return number of occurrences of value.
index(self, value, start=0, stop=9223372036854775807, /)
Return first index of value.
 
Raises ValueError if the value is not present.

Class methods inherited from builtins.tuple:
__class_getitem__(...) from builtins.type
See PEP 585

 
Functions
       
cos(x, /)
Return the cosine of x (measured in radians).
degrees(x, /)
Convert angle x from radians to degrees.
isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
Determine whether two floating point numbers are close in value.
 
  rel_tol
    maximum difference for being considered "close", relative to the
    magnitude of the input values
  abs_tol
    maximum difference for being considered "close", regardless of the
    magnitude of the input values
 
Return True if a is close in value to b, and False otherwise.
 
For the values to be considered close, the difference between them
must be smaller than at least one of the tolerances.
 
-inf, inf and NaN behave similarly to the IEEE 754 Standard.  That
is, NaN is not close to anything, even itself.  inf and -inf are
only close to themselves.
radians(x, /)
Convert angle x from degrees to radians.
sin(x, /)
Return the sine of x (measured in radians).

 
Data
        ANGLES = {'half': Angle(degrees=180.0, radians=3.141592653589793, sin=1.2246467991473532e-16, cos=-1.0), 'quarter': Angle(degrees=90.0, radians=1.5707963267948966, sin=1.0, cos=6.123233995736766e-17), 'three_quarter': Angle(degrees=270.0, radians=4.71238898038469, sin=-1.0, cos=-1.8369701987210297e-16)}
DOWN = Translation(dx=0.0, dy=1.0)
LEFT = Translation(dx=-1.0, dy=0.0)
RIGHT = Translation(dx=1.0, dy=0.0)
UP = Translation(dx=0.0, dy=-1.0)
Union = typing.Union
VECTORS = {'down': Translation(dx=0.0, dy=1.0), 'left': Translation(dx=-1.0, dy=0.0), 'right': Translation(dx=1.0, dy=0.0), 'up': Translation(dx=0.0, dy=-1.0)}